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5 General Electric Company, Corporate Research and Development, PO Box 8, Schenec- 
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Abstract. We present evidence for the partial suppression of self-avoidance effects in the 
rod-to-coil transition scaling, observed recently in numerical simulations. The scaling 
ansatz is examined critically, and also checked explicitly in a soluble model on a partially 
directed lattice. 

In this letter, we focus on aspects of the scaling behaviour in the simplest lattice model 
of a single chain rod-to-coil transition (Halley et a1 1985, Lee and Nakanishi 1986). 
Thus we consider biased self-avoiding walks (BSAW) of N steps on hypercubic lattices. 
For each 90" turn of a walk, a statistical weight w is assigned, where w is positive and 
small. If w + 0 for fixed N, the statistical averages over N-step walks will be dominated 
by elongated, rod-like configurations. 

The above model is a simple theoretical abstraction. Indeed, the concept of 
persistency has played an important role since the early, effective-field theories of 
polymer conformation (see, e.g., Odijk (1983) and references therein). However, in 
real systems studied experimentally, the pattern is typically complicated, the persistency 
being both linear and planar (Chance et a1 1979, Lim et a1 1983, Lim and Heeger 
1985), or having a more involved structure (Mattice and Scheraga (1984) and references 
therein). More realistic theoretical models of persistency effects within the scaling 
framework (see, e.g., Schroll et a1 1982) failed to allow fully for the self-avoidance. 
Other studies explored the interplay between the intra-chain semiflexibility and the 
inter-chain interactions and/or the anisotropy of the surrounding medium (see Warner 
et a1 (1989, Nagle et a1 (1984) and literature quoted therein). 

Armed with the concept of universality, we turn to the simplest lattice model which 
we consider in general dimensionality, d. Halley et a1 (1985) proposed the following 
scaling relation for the mean-squared end-to-end distance of N-step walks 

( R L (  w ) )  = N 2 G (  w N 4 ) .  (1) 
(Note that we use a different notation which is more suited to our discussion.) This 
relation was checked through extensive Monte Carlo calculations by Lee and Nakanishi 
(1986). Both numerical studies in d = 2,3, and some analytical arguments suggest 

6 B S A W =  1. (2) 

asx+co (3)  

However, the standard scaling prediction for the large argument behaviour, 
G(x) I x ( 2 v - 2 ) / d  
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where Y = vSAW, was not observed in d = 3 dimensions even for rather large values of 
the scaling combination 

x =  w N 4 .  (4) 

Instead, Lee and Nakanishi (1986) found that for an unexpectedly large range of x 
values, 

GBSAW(X) GBRW(X) ( 5 )  

where BRW denotes biased random walks with no immediate returns (but revisits are 
otherwise permitted). The approximate equality (5) extends well into the regime of 
the large-x asymptotic behaviour of GBRW(X), which is of the form (3)  but with v = 
In the present work, we carry out a perturbative study of this anomalous behaviour, 
to the leading non-trivial order in the small-x expansion. We also report exact results 
for the partially directed BSAW on the square lattice. For this non-Gaussian model, the 
scaling ansatz is found to hold, with 4 = 1 .  

Let c( k, N )  denote the total number of N-step walks having exactly k turns. Then 
the generating function, 

N-l  

C(w, N ) =  c (k ,  N ) w k  
k = O  

must scale according to 

C( w, N) = F (  w N 4 ) .  

F B R W ( X )  = 2d exp[2(d - l)x] 

( 7 )  

For random walks with no immediate returns 

(8) 

and 4 B R w s  1. Corrections to (7)  are of relative order w or 1 /  N, for the BRW case. 
The scaling function F measures the multiplicity of walks, weighted by the appropriate 
powers of w. We focus on this quantity since it is easier to handle than the radii. The 
asymptotically exponential form of F B R W ( X )  for large x reflects a finite entropy (per 
step) in the 'coil' limit. 

Consider now the relation 

C B S A ~ W ,  N )  = C B R W ( W ,  N) - Cdw, N )  (9) 

where the subscript C denotes the generating function for walks with at least one 
revisited site (contact). If we assume that all three quantities scale according to (7),  
with the same 4 = 4 B R W '  1,  then 

FBSAW(X) = F B R w ( x )  - Fdx).  (10) 

For small x, 

F B R W ( x )  = 2 d + 4 d ( d  - i )x+4d(d  - 1)2X2+:d(d - 1 ) 3 X 3 + '  ' * . ( 1 1 )  
Let us consider the contribution of Fc(x) to a similar expansion for F B S A W ,  via (10). 
Contact configurations are not possible for k=0, 1 and 2 turns. Thus to order x2 
inclusive, all the scaling functions for BSAW and BRW are identical. Since the perturba- 
tive argument by Halley et a1 (1985) for 4 B s A W  = 1 is essentially equivalent to the O(x) 
expansion of the scaling functions, they actually did not establish anything beyond 
4BRw = 1 ! One still needs the assumption that the three terms in (9) scale, in a similar 
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1 

0 i 
0 

fashion, to imply (10). Note that the analogue of (10) for the mean-squared radii ( 1 )  
is 

( FG) BSAW = ( FG) B R W  - ( FG)c. (12) 

Let us consider the leading non-trivial order, ( w N ) ~ .  The number of three-turn 
random walks with no immediate returns is given by 

7 \’ 

1 

m 4 

N - j -  2 m - 2  1 

b 

~ - 3  N - n o - 2  N - n , - n , - l  N - n o - n , - n 2  

4 3 ,  ~ ) = 2 d [ 2 ( d - 1 ) ] ~  C C C G N , n o + n l + n 2 + n 3  
n o = l  n , = l  n 2 = l  n 3 = l  

where the nj denote the number of steps in the four straight sections. The sums can 
be evaluated to yield 

4 3 ,  ~ ) = 2 d [ 2 ( d - 1 ) ] ~ ( ~ - 1 ) ( ~ - 2 ) ( ~ - 3 ) / 6 .  (14) 

For large N, the product w3c(3, N )  contributes to the x3 term in ( 1 1 ) .  Consider now 
contact configurations with three turns. There is only one topology, a rectangular loop 
shown in figure 1 .  It can have 4d(d - 1 )  possible orientations. The contribution of 
such loops to Cc(w, N )  is given by 

N-4 [ ( N - j ) / 2 ] - 1  [ ( N - j ) / Z ] - m  

4 d ( d - l ) w 3  C 
j = O  m = l  / = I  

1 = d i d  - l)w3(N+ n)( N - 1) (  N - 2  - n ) / 6  

(15) 
where the brackets denote the ‘integral part,’ and n indicates the parity of N :  n = 0 
for N even, n = 1 for N odd. The O ( N 3 )  term of this sum is 

: d ( d  - 1 ) ( ~ ~ ) 3 = ~ 3  (16) 

which provides the leading-order non-trivial check for +BsAW = 1 .  The relative number 
of ‘contact’ as opposed to general walks is 

Cc(3, N ) / ~ B R w ( ~ ,  N )  [16(d - 1)*1-’ (17) 
which is about 6% in d = 2, but only about If”/. in d = 3.  Notice that the number of 
contact walks is suppressed not only by a numerical factor, but also by the factor 
( d  - 1)-2,  which essentially reflects the constraint that the loops be more planar than 

Figure 1. The only ‘contact’ topology with three turns. The number of steps in each straight 
portion is indicated. 
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the rest of the walk, and which becomes more effective with increasing dimensionality. 
Furthermore, since most of the multi-turn walks have sub-loops of the type of figure 
1, their contribution to higher order in x will be strongly suppressed. Unfortunately, 
explicit calculation of the number of k-turn contact walks for higher k seems imprac- 
tical. The general trend indicated by the lowest-order calculation-specifically, the 
stronger suppression of the self-avoidance effects in d = 3 than in d = 2-is consistent 
with the numerical results of Lee and Nakanishi (1986). Finally, note that the even-odd 
oscillations in the corrections to the leading O(x3) scaling, in (19, are reminiscent of 
the ordinary ( w  = 1) square lattice SAW behaviour. 

In order to have some indication that the scaling (1) is applicable beyond the 
small-x expansion, in a non-Gaussian model, we considered partially directed BSAW 

on the square lattice. For these walks, only ktX̂ and +y* steps are permitted. The 
problem can be solved exactly. We used the generating function technique described 
by Szpilka (1983). Only a simple extension and more bookkeeping are needed to 
account for the turn weights, w. Specifically, we calculated 

C( W ,  N )  = 3[ A( W ,  N )  - A( W, N - l)] + 4wA( W ,  N - 1) (18) 

where 

A( W ,  N )  E [ ( 1 + ~ f i )  - ( 1 - w f i )  "1 (2 ~ f i ) - ' .  (19) 

We also calculated the first moment of R, :  

This moment is non-zero due to asymmetry in the y direction. (Calculation of the 
second moments is straightforward but tedious.) The appropriate scaling form for this 
result is 

with 

and 

P D B ~ A W ( X )  = $ -  S ~ ~ ~ ( X J Z ) [ ~ ~ J Z F D , , A ~ ( X ) ] - '  (23) 

FDBSAW(X) = 3 cosh(xfi)  + 2 f i  sinh(xfi) 

where x =  wN. Here, as in (71, 

(24) 

is the scaling function for the generating function C ( w ,  N ) .  
For this partially directed walk model, then, the expected scaling indeed holds, and 

both the small-x and large-x scaling function behaviours are 'normal,' as can be 
checked explicitly. 
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