Scaling at the conformational rod-to-coil transition

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 19 L1185
(http://iopscience.iop.org/0305-4470/19/18/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 19:24

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Scaling at the conformational rod-to-coil transition

M L Glasser \dagger, V Privman \ddagger and A M Szpilka§
† Department of Mathematics and Computer Science, Clarkson University, Potsdam, NY 13676, USA
\ddagger Department of Physics, Clarkson University, Potsdam, NY 13676, USA
§ General Electric Company, Corporate Research and Development, PO Box 8, Schenectady, NY 12301, USA

Received 29 July 1986

Abstract

We present evidence for the partial suppression of self-avoidance effects in the rod-to-coil transition scaling, observed recently in numerical simulations. The scaling ansatz is examined critically, and also checked explicitly in a soluble model on a partially directed lattice.

In this letter, we focus on aspects of the scaling behaviour in the simplest lattice model of a single chain rod-to-coil transition (Halley et al 1985, Lee and Nakanishi 1986). Thus we consider biased self-avoiding walks (bSaw) of N steps on hypercubic lattices. For each 90° turn of a walk, a statistical weight w is assigned, where w is positive and small. If $w \rightarrow 0$ for fixed N, the statistical averages over N-step walks will be dominated by elongated, rod-like configurations.

The above model is a simple theoretical abstraction. Indeed, the concept of persistency has played an important role since the early, effective-field theories of polymer conformation (see, e.g., Odijk (1983) and references therein). However, in real systems studied experimentally, the pattern is typically complicated, the persistency being both linear and planar (Chance et al 1979, Lim et al 1983, Lim and Heeger 1985), or having a more involved structure (Mattice and Scheraga (1984) and references therein). More realistic theoretical models of persistency effects within the scaling framework (see, e.g., Schroll et al 1982) failed to allow fully for the self-avoidance. Other studies explored the interplay between the intra-chain semiflexibility and the inter-chain interactions and/or the anisotropy of the surrounding medium (see Warner et al (1985), Nagle et al (1984) and literature quoted therein).

Armed with the concept of universality, we turn to the simplest lattice model which we consider in general dimensionality, d. Halley et al (1985) proposed the following scaling relation for the mean-squared end-to-end distance of N -step walks

$$
\begin{equation*}
\left\langle R_{N}^{2}(w)\right\rangle \approx N^{2} G\left(w N^{\phi}\right) . \tag{1}
\end{equation*}
$$

(Note that we use a different notation which is more suited to our discussion.) This relation was checked through extensive Monte Carlo calculations by Lee and Nakanishi (1986). Both numerical studies in $d=2,3$, and some analytical arguments suggest

$$
\begin{equation*}
\phi_{\mathrm{BSAW}}=1 . \tag{2}
\end{equation*}
$$

However, the standard scaling prediction for the large argument behaviour,

$$
\begin{equation*}
G(x) \sim x^{(2 \nu-2) / \phi} \quad \text { as } x \rightarrow \infty \tag{3}
\end{equation*}
$$

where $\nu \equiv \nu_{\text {SAW }}$, was not observed in $d=3$ dimensions even for rather large values of the scaling combination

$$
\begin{equation*}
x \equiv w N^{\phi} . \tag{4}
\end{equation*}
$$

Instead, Lee and Nakanishi (1986) found that for an unexpectedly large range of x values,

$$
\begin{equation*}
G_{\mathrm{BSAW}}(x) \simeq G_{\mathrm{BRW}}(x) \tag{5}
\end{equation*}
$$

where BRW denotes biased random walks with no immediate returns (but revisits are otherwise permitted). The approximate equality (5) extends well into the regime of the large- x asymptotic behaviour of $G_{\mathrm{BRW}}(x)$, which is of the form (3) but with $\nu=\frac{1}{2}$. In the present work, we carry out a perturbative study of this anomalous behaviour, to the leading non-trivial order in the small-x expansion. We also report exact results for the partially directed BSAw on the square lattice. For this non-Gaussian model, the scaling ansatz is found to hold, with $\phi=1$.

Let $c(k, N)$ denote the total number of N-step walks having exactly k turns. Then the generating function,

$$
\begin{equation*}
C(w, N) \equiv \sum_{k=0}^{N-1} c(k, N) w^{k} \tag{6}
\end{equation*}
$$

must scale according to

$$
\begin{equation*}
C(w, N) \approx F\left(w N^{\phi}\right) \tag{7}
\end{equation*}
$$

For random walks with no immediate returns

$$
\begin{equation*}
F_{\mathrm{BRW}}(x)=2 d \exp [2(d-1) x] \tag{8}
\end{equation*}
$$

and $\phi_{\mathrm{BRW}} \equiv 1$. Corrections to (7) are of relative order w or $1 / N$, for the BRW case. The scaling function F measures the multiplicity of walks, weighted by the appropriate powers of w. We focus on this quantity since it is easier to handle than the radii. The asymptotically exponential form of $F_{\mathrm{BRW}}(x)$ for large x reflects a finite entropy (per step) in the 'coil' limit.

Consider now the relation

$$
\begin{equation*}
C_{\mathrm{BSAW}}(w, N)=C_{\mathrm{BRW}}(w, N)-C_{\mathrm{C}}(w, N) \tag{9}
\end{equation*}
$$

where the subscript C denotes the generating function for walks with at least one revisited site (contact). If we assume that all three quantities scale according to (7), with the same $\phi=\phi_{\mathrm{BRW}} \equiv 1$, then

$$
\begin{equation*}
F_{\mathrm{BSAW}}(x)=F_{\mathrm{BRW}}(x)-F_{\mathrm{C}}(x) . \tag{10}
\end{equation*}
$$

For small x,

$$
\begin{equation*}
F_{\mathrm{BRW}}(x)=2 d+4 d(d-1) x+4 d(d-1)^{2} x^{2}+\frac{8}{3} d(d-1)^{3} x^{3}+\cdots \tag{11}
\end{equation*}
$$

Let us consider the contribution of $F_{\mathrm{C}}(x)$ to a similar expansion for F_{BSAW}, via (10). Contact configurations are not possible for $k=0,1$ and 2 turns. Thus to order x^{2} inclusive, all the scaling functions for bSAW and BRW are identical. Since the perturbative argument by Halley et al (1985) for $\phi_{\mathrm{BSAW}}=1$ is essentially equivalent to the $\mathrm{O}(x)$ expansion of the scaling functions, they actually did not establish anything beyond $\phi_{\mathrm{BRW}}=1$! One still needs the assumption that the three terms in (9) scale, in a similar
fashion, to imply (10). Note that the analogue of (10) for the mean-squared radii (1) is

$$
\begin{equation*}
(F G)_{\mathrm{BSAW}}=(F G)_{\mathrm{BRW}}-(F G)_{\mathrm{C}} . \tag{12}
\end{equation*}
$$

Let us consider the leading non-trivial order, $(w N)^{3}$. The number of three-turn random walks with no immediate returns is given by
$c(3, N)=2 d[2(d-1)]^{3} \sum_{n_{0}=1}^{N-3} \sum_{n_{1}=1}^{N-n_{0}-2} \sum_{n_{2}=1}^{N-n_{0}-n_{1}-1} \sum_{n_{3}=1}^{N-n_{0}-n_{1}-n_{2}} \delta_{N, n_{0}+n_{1}+n_{2}+n_{3}}$
where the n_{j} denote the number of steps in the four straight sections. The sums can be evaluated to yield

$$
\begin{equation*}
c(3, N)=2 d[2(d-1)]^{3}(N-1)(N-2)(N-3) / 6 . \tag{14}
\end{equation*}
$$

For large N, the product $w^{3} c(3, N)$ contributes to the x^{3} term in (11). Consider now contact configurations with three turns. There is only one topology, a rectangular loop shown in figure 1. It can have $4 d(d-1)$ possible orientations. The contribution of such loops to $C_{\mathrm{C}}(w, N)$ is given by

$$
\begin{equation*}
4 d(d-1) w^{3} \sum_{j=0}^{N-4} \sum_{m=1}^{[(N-j) / 2]-1} \sum_{l=1}^{[(N-j) / 2]-m} 1=d(d-1) w^{3}(N+n)(N-1)(N-2-n) / 6 \tag{15}
\end{equation*}
$$

where the brackets denote the 'integral part,' and n indicates the parity of $N: n=0$ for N even, $n=1$ for N odd. The $\mathrm{O}\left(N^{3}\right)$ term of this sum is

$$
\begin{equation*}
\frac{1}{6} d(d-1)(w N)^{3} \propto x^{3} \tag{16}
\end{equation*}
$$

which provides the leading-order non-trivial check for $\phi_{\mathrm{BSAW}}=1$. The relative number of 'contact' as opposed to general walks is

$$
\begin{equation*}
c_{\mathrm{C}}(3, N) / c_{\mathrm{BRW}}(3, N) \approx\left[16(d-1)^{2}\right]^{-1} \tag{17}
\end{equation*}
$$

which is about 6% in $d=2$, but only about $1 \frac{1}{2} \%$ in $d=3$. Notice that the number of contact walks is suppressed not only by a numerical factor, but also by the factor $(d-1)^{-2}$, which essentially reflects the constraint that the loops be more planar than

Figure 1. The only 'contact' topology with three turns. The number of steps in each straight portion is indicated.
the rest of the walk, and which becomes more effective with increasing dimensionality. Furthermore, since most of the multi-turn walks have sub-loops of the type of figure 1, their contribution to higher order in x will be strongly suppressed. Unfortunately, explicit calculation of the number of k-turn contact walks for higher k seems impractical. The general trend indicated by the lowest-order calculation-specifically, the stronger suppression of the self-avoidance effects in $d=3$ than in $d=2$-is consistent with the numerical results of Lee and Nakanishi (1986). Finally, note that the even-odd oscillations in the corrections to the leading $\mathrm{O}\left(x^{3}\right)$ scaling, in (15), are reminiscent of the ordinary $(w=1)$ square lattice saw behaviour.

In order to have some indication that the scaling (1) is applicable beyond the small- x expansion, in a non-Gaussian model, we considered partially directed bSAW on the square lattice. For these walks, only $\pm \hat{x}$ and $+\hat{y}$ steps are permitted. The problem can be solved exactly. We used the generating function technique described by Szpilka (1983). Only a simple extension and more bookkeeping are needed to account for the turn weights, w. Specifically, we calculated

$$
\begin{equation*}
C(w, N)=3[A(w, N)-A(w, N-1)]+4 w A(w, N-1) \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
A(w, N) \equiv\left[(1+w \sqrt{2})^{N}-(1-w \sqrt{2})^{N}\right](2 w \sqrt{2})^{-1} . \tag{19}
\end{equation*}
$$

We also calculated the first moment of R_{y} :

$$
\begin{equation*}
\left\langle R_{y}(w, N)\right\rangle=\frac{1}{2}[N-A(w, N) / C(w, N)] . \tag{20}
\end{equation*}
$$

This moment is non-zero due to asymmetry in the y direction. (Calculation of the second moments is straightforward but tedious.) The appropriate scaling form for this result is

$$
\begin{equation*}
\left\langle R_{y}(w, N)\right\rangle \approx N P\left(w N^{\phi}\right) \tag{21}
\end{equation*}
$$

with

$$
\begin{equation*}
\phi_{\mathrm{DBSAW}} \equiv 1 \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\mathrm{DBSAW}}(x)=\frac{1}{2}-\sinh (x \sqrt{2})\left[2 x \sqrt{2} F_{\mathrm{DBSAW}}(x)\right]^{-1} \tag{23}
\end{equation*}
$$

where $x \equiv w N$. Here, as in (7),

$$
\begin{equation*}
F_{\mathrm{DBSAW}}(x)=3 \cosh (x \sqrt{2})+2 \sqrt{2} \sinh (x \sqrt{2}) \tag{24}
\end{equation*}
$$

is the scaling function for the generating function $C(w, N)$.
For this partially directed walk model, then, the expected scaling indeed holds, and both the small- x and large- x scaling function behaviours are 'normal,' as can be checked explicitly.

This research has been supported in part by the US National Science Foundation, through grants DMS-8503296 and DMR-8601208.

References

Chance R R, Patel G N and Witt J D 1979 J. Chem. Phys. 71 206-11
Halley J W, Nakanishi H and Sundararajan R 1985 Phys. Rev. B 31 293-8
Lee S B and Nakanishi H 1986 Phys. Rev. B 33 1953-62
Lim K C, Fincher C R and Heeger A J 1983 Phys. Rev. Lett. 50 1934-7
Lim K C and Heeger A J 1985 J. Chem. Phys. 82 522-30
Mattice W L and Scheraga H A 1984 Biopolymers 23 1701-24
Nagle J F, Gujrati P D and Goldstein M 1984 J. Phys. Chem. 88 4599-608
Odijk T 1983 Macromol. 16 1340-4
Schroll W K, Walker A B and Thorpe M F 1982 J. Chem. Phys. 76 6384-92
Szpilka A M 1983 J. Phys. A: Math. Gen. 16 2883-5
Warner M, Gunn J M F and Baumgärtner A B 1985 J. Phys. A: Math. Gen. 18 3007-26

